
Scala for Java
Developers

a presentation for the

Tampa Java Users Group

by

Steve Waldman
2023-05-11 @ KForce (Thanks!)

=>
=>
=>

swaldman@mchange.com
@interfluidity@fosstodon.org
https://github.com/swaldman

mailto:swaldman@mchange.com
https://fosstodon.org/@interfluidity
https://github.com/swaldman

Preliminaries

Scala as bleeding-edge Java
Scala Feature Eventual Java Feature
lambdas, map(...), etc. lambdas, map(...), etc.
scala.Option java.lang.Optional
case class record
pattern matching enhanced switch
sealed classes and traits sealed classes and interfaces
ubiquitous type inference inferred var type
concurrency via Future concurrency via Future
concrete trait methods default methods of interface
_ for unnamed variables _ for unnamed variables

Scala as bleeding-edge Java
All these features are more idiomatic to and
deeply integrated into Scala.

Scala arguably exists because Martin Odersky
got frustrated with the slow pace of Java
evolution.

See , the 1997 prototype of generic Javapizza

https://pizzacompiler.sourceforge.net/doc/pizza-language-spec.pdf

Why Scala?

Concision
Scala

encourages programmers to express themselves cleanly and
concisely with very little boilerplate.

successfully blends multiple programming-language paradigms
(functional, object-oriented), enabling whichever style best models a
particular problem or domain.

combines flexible syntax with extraordinary type safety, enabling
construction of "dialects" that function as domain-specific languages.

Concision — Primes in Java

publicpublic finalfinal classclass PrimesPrimes {
 publicpublic staticstatic booleanboolean isPrimeisPrime(intint n) {
 varvar isPrime = truetrue;
 varvar max = (intint) Math.floor(Math.sqrt(n));
 forfor (intint i = 2; i <= max; ++i) {
 ifif (n % i == 0) {
 isPrime = falsefalse;
 breakbreak;
 }
 }
 returnreturn isPrime;
 }
}

Concision — Primes in Scala

defdef isPrimeisPrime(n : IntInt) =
 !(2 to math.floor(math.sqrt(n)).toInt).exists(n % _ == 0)

or, perhaps more readably...

defdef isPrimeisPrime(n : IntInt) =
 valval max = math.floor(math.sqrt(n)).toInt
 !(2 to max).exists(n % _ == 0)

⇒ I am using Scala 3 syntax!

Concision — Primes in Java, functional style

importimport java.util.stream.IntStream;

publicpublic finalfinal classclass PrimesPrimes {
 publicpublic staticstatic booleanboolean isPrimeisPrime(intint n) {
 varvar max = (intint) Math.floor(Math.sqrt(n));
 returnreturn !IntStream.rangeClosed(2, max)
 .anyMatch(check -> n % check == 0);
 }
}

⇒ Pretty close!

Safety

defdef sendmailsendmail(to: StringString, subject: StringString, text: StringString) = ???

Yuck.

🤮

Enforce everything you know at compile-time!

defdef sendmailsendmail(to: EmailEmail, subject: StringString, text: StringString) = ???

⇒ The ??? function is a wonderful convenience!

Safety
Elsewhere...
opaque typetype EmailEmail = StringString

classclass BadEmailBadEmail(msg: StringString, cause: ThrowableThrowable = null) extendsextends ExceptionException(msg, cause)

// modified from https://www.regular-expressions.info/email.html
valval EmailRegexEmailRegex = """(?i)^\s*([A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,})\s*$""".r

defdef toEmailtoEmail(s: StringString): EmailEmail =
 s matchmatch {
 casecase EmailRegexEmailRegex(trimmed) => trimmed
 casecase _ => throwthrow newnew BadEmailBadEmail(s)
 }

// toString() will give us back our String

⇒ No boxing or runtime overhead! One-line custom Exception!

Abstraction
e.g. "tagless final" style — very optional! love it or hate it!
// from Practical FP in Scala, 2nd Ed, by Gabriel Volpe (2021)
finalfinal casecase classclass CheckoutCheckout[FF[_]: BackgroundBackground: LoggerLogger: MonadThrowMonadThrow: RetryRetry](
 payments: PaymentClientPaymentClient[FF],
 cart: ShoppingCartShoppingCart[FF],
 orders: OrdersOrders[FF],
 policy: RetryPolicyRetryPolicy[FF]
){
 defdef processprocess(userId: UserIdUserId, card: CardCard): FF[OrderIdOrderId] =
 cart.get(userId).flatMap {
 casecase CartTotalCartTotal(items, total) =>
 forfor {
 its <- ensureNonEmpty(items)
 pid <- processPayment(PaymentPayment(userId, total, card))
 oid <- createOrder(userId, pid, its, total)
 _ <- cart.delete(userId).attempt.void
 } yieldyield oid
 }
 defdef processPaymentprocessPayment(in: PaymentPayment): FF[PaymentIdPaymentId] =
 RetryRetry[FF] // calls no-arg apply methods of Retry, finds implicit instance
 .retry(policy, RetriableRetriable.PaymentsPayments)(payments.process(in))
 .adaptError {
 casecase e => PaymentErrorPaymentError(OptionOption(e.getMessage).getOrElse("Unknown"))
 }
 // ...
}

Hyperscale
The Scala ecosystem includes libraries for building concurrent, resilient,
incredibly scalable services based on transformable "functional effects".

 /

See also , an infrastructure agnostic endpont definition library.

These are libraries are challenging. End up here, but don't start your Scala
journey with these tools, unless you are working with a team to mentor you.

ZIO

Cats effects FS2

Tapir

https://zio.dev/
https://typelevel.org/cats-effect/
https://fs2.io/
https://tapir.softwaremill.com/en/latest/

Simplicity
Scala's best kept secret is how beautifully you can accomplish simple
things very simply, while getting all the benefits of strong type safety.

Scala's built-in is a superpower.collections library

https://docs.scala-lang.org/overviews/collections-2.13/introduction.html
https://docs.scala-lang.org/scala3/book/introduction.html

Simplicity
 writes beautiful libraries that emphasize simplicity.

Some examples I enjoy include
 for simple file-system and process handling

, a simple blocking HTTP client
, simple typesafe JSON processing

, beautifully concise testing
, HTTP services without ceremony

Check out all of his libraries .
Haoyi is also the author of the build tool, which like all build
tools in Scala is a Swiss Army knife with which you do much
more than build.
Haoyi's book is a great
introduction for programmers interested in getting stuff done
fast.

Li Haoyi

os-lib
requests-scala
upickle
utest
cask

here
mill

Hands-On Scala Programming

https://www.lihaoyi.com/
https://github.com/com-lihaoyi/os-lib
https://github.com/com-lihaoyi/requests-scala
https://github.com/com-lihaoyi/upickle
https://github.com/com-lihaoyi/utest
https://github.com/com-lihaoyi/cask
https://github.com/orgs/com-lihaoyi/repositories
https://github.com/com-lihaoyi/mill
https://www.goodreads.com/en/book/show/53836488

Compatible
The full range of Java libraries is accessible from Scala code

You can write Java-compatible facades to make your Scala libs
available to Java and other JVM language clients.

Just effing interesting
Scala is...

a kitchen sink / mad scientists'
lab of programming language
ideas

a metaprogramming language
as much as programming
language

Commune with the compiler.

paque types • top-level declarations • inline, macros, and metaprogramming
• flexible, concise syntax • multiplatform: Scala JVM, Scala JS, Scala native •
rich collections library • typeclasses / ad hoc polymorphism • apply(...)
method makes anything callable • rich regex support • for comprehensions,
convenient monad sequencing • strong immutability preference • by-name
params + multiple arg lists => user-defined control flow constructs • infix
function notation => operator overloading • String interpolation • case class
• strong expressive typing with convenient type inference • extension
methods • if/then and codeblocks as expressions • multiline String •
pattern matching with deep destructuring • higher kinded types • Nothing as
type hierarchy bottom • singleton object, much saner than static • opaque
types • top-level declarations • inline, macros, and metaprogramming •
flexible, concise syntax • multiplatform: Scala JVM, Scala JS, Scala native •
rich collections library • typeclasses / ad hoc polymorphism • apply(...)
method makes anything callable • rich regex support • for comprehensions,
convenient monad sequencing • strong immutability preference • by-name
params + multiple arg lists => user-defined control flow constructs • infix
function notation => operator overloading • String interpolation • case class
• strong expressive typing with convenient type inference • extension

Word
Salad

scala-cli for Java programmers

scala-cli
a shell command, minimal-config build tool in the style of golang's
multifarious go command.

will soon become the default scala command
replaces existing command modeled on the java command

supports compiling, running, packaging, and publishing libraries and
applications, and running a REPL

supports graalvm native image generation

supports scripting in Scala
#!/usr/bin/env -S scala-cli shebang

scala-cli
supports Java code as well and easily as Scala code!

On the Java side, jbang is the closest competition, but scala-cli is
in some respects easier to use, more "batteries included"

and of course, scala-cli supports Scala too

Consider prototyping your Java projects with scala-cli

maybe mix in a bit of Scala!

https://scala-cli.virtuslab.org/

https://scala-cli.virtuslab.org/

Demos

Demos
1. HelloWorld.java in scala-cli

output to native

2. HelloPDF.java in scala-cli
let's use , dependency resolution is so easy!
output to JVM-dependent package

3. HelloWorld.scala
cool regex handling

4. poemalyzer
hit a JSON API with to grab a random poem
deserialize result to case class with
build a sorted word frequency table with Scala's
print a nice report

Apache PDFBox

requests-scala
upickle

Collections API

https://pdfbox.apache.org/
https://github.com/com-lihaoyi/requests-scala
https://github.com/com-lihaoyi/upickle
https://docs.scala-lang.org/scala3/book/introduction.html

Demos — cheatsheet
Library

org.apache.pdfbox:pdfbox:2.0.28 ← Java
com.lihaoyi::upickle:3.1.0 ← Scala
com.lihaoyi::requests:0.8.0 ← Scala
understand the tricky double colon for Scala libs!

 Hello World to steal

 breadcrumbs
requests.get(...).text()

 breadcrumbs
upickle.default.{ReadWriter, read}

 random poem endpoint
https://poetrydb.org/random

coordinates

PDFBox
https://pdfbox.apache.org/1.8/cookbook/documentcreation.html

requests

upickle

PoetryDB API

https://central.sonatype.com/
https://pdfbox.apache.org/
https://pdfbox.apache.org/1.8/cookbook/documentcreation.html
https://github.com/com-lihaoyi/requests-scala
https://github.com/com-lihaoyi/upickle
https://github.com/thundercomb/poetrydb

Epilogue

Learn Scala
Quickstart:

Free Scala at Light Speed two-hour video course

Recommended books:
Hands on Scala Programming by Li Haoyi

Programming Scala, 3ed by Dean Wampler

Programming in Scala, 5ed by Odersky et al

rockthejvm.com

https://lihaoyi.gumroad.com/l/DNJPR

https://www.oreilly.com/library/view/programming-scala-3rd/9781492077886/

https://www.artima.com/shop/programming_in_scala_5ed

https://rockthejvm.com/
https://lihaoyi.gumroad.com/l/DNJPR
https://www.oreilly.com/library/view/programming-scala-3rd/9781492077886/
https://www.artima.com/shop/programming_in_scala_5ed

Thank You!

Colophon
Tools

 — web presentation library
 — Scala static-site generator

 — Scala templating library

Images
Cover image, weird server farm — Midjourney
Over-under sunny ocean split shot — Bing Image Generator
Goofy Superhero — Bing Image Generator
Steampunk mad scientist's lab — Bing Image Generator
Headshots of Martin Odersky and Li Hayoi scraped from online profile pics

Fonts

You can find the build of this presentation .

reveal.js
unstatic
untemplate

Raleway
Inconsolata

here

https://revealjs.com/
https://github.com/swaldman/unstatic
https://github.com/swaldman/untemplate-doc
https://fonts.google.com/specimen/Raleway
https://fonts.google.com/specimen/Inconsolata
https://github.com/swaldman/tjug-scala-talk-2023-05-11

