
Demystifying

ENS
...with sbt-ethereum

namehash(“eth“): 0x93cdeb708b7545dc668eb9280176169d1c33cfd8ed6f04690a0bcc88a93fc4ae
Interface ID — Controller: 0x018fac06
Interface ID — ERC721 (NFT): 0x6ccb2df4

ENS Architecture Summary

ENS
tld = “eth”

owner(namehash(“eth”))

registrar

resolverresolver(namehash(“eth”))

0xfac7bea255a6990f749363002136af6556b31e04

0x314159265dd8dbb310642f98f50c066173c1259b 0x97683a370239817cf33ec2c2ad3b3a1884571f69

interfaceImplementer(namehash(“eth”), 0x018fac06)interfaceImplementer(namehash(“eth”), 0x6ccb2df4)

0xb22c1c159d12461ea124b0deb4b5b93020e6ad16

controller

Permanent Temporary

Hierarchical Hashing
» ENS operates on hashes, not names

» In order to distinguish between hashes of new names (which must be registered) and subnodes (which
owners can define and alter at will, hashing is hierarchical.

» Given a name like 'happy.birthday.eth', 'happy' is the label and 'birthday.eth' is the parent

» hash("") is defined as 0x00

» let's call this ZEROHASH

» namehash(childpath) = keccak256(namehash(parent) ~concat~ keccak256(normalize(label)))

» labels are normalized by lowercasing then using IDN (international domain name, "punycode")
conventions to convert to ascii-only bytes

» let's define labelhash(label) = keccak256(normalize(label))

» So, the top-level-domain 'eth' gets EthNameHash = namehash(ZEROHASH ~concat~ labelhash("eth"))

» 'happy.eth' gets HappyEthNameHash = namehash(EthNameHash ~concat~ labelhash("happy")), etc.

ENS
interface ENS {

 // Logged when the owner of a node assigns a new owner to a subnode.
 event NewOwner(bytes32 indexed node, bytes32 indexed label, address owner);

 // Logged when the owner of a node transfers ownership to a new account.
 event Transfer(bytes32 indexed node, address owner);

 // Logged when the resolver for a node changes.
 event NewResolver(bytes32 indexed node, address resolver);

 // Logged when the TTL of a node changes
 event NewTTL(bytes32 indexed node, uint64 ttl);

 function setSubnodeOwner(bytes32 node, bytes32 label, address owner) external;
 function setResolver(bytes32 node, address resolver) external;
 function setOwner(bytes32 node, address owner) external;
 function setTTL(bytes32 node, uint64 ttl) external;
 function owner(bytes32 node) external view returns (address);
 function resolver(bytes32 node) external view returns (address);
 function ttl(bytes32 node) external view returns (uint64);
}

Registrar
abridged, removed stuff re prior registrar/migration

contract BaseRegistrar is IERC721, Ownable {
 uint constant public GRACE_PERIOD = 90 days;

 event ControllerAdded(address indexed controller);
 event ControllerRemoved(address indexed controller);
 event NameMigrated(uint256 indexed id, address indexed owner, uint expires);
 event NameRegistered(uint256 indexed id, address indexed owner, uint expires);
 event NameRenewed(uint256 indexed id, uint expires);

 // The ENS registry
 ENS public ens;

 // The namehash of the TLD this registrar owns (eg, .eth)
 bytes32 public baseNode;

 // A map of addresses that are authorised to register and renew names.
 mapping(address=>bool) public controllers;

 function addController(address controller) external; // onlyOwner (in current implemetation)
 function removeController(address controller) external; // onlyOwner
 function setResolver(address resolver) external; // onlyOwner
 function nameExpires(uint256 id) external view returns(uint);
 function available(uint256 id) public view returns(bool);
 function register(uint256 id, address owner, uint duration) external returns(uint); // onlyController (in current implementation)
 function renew(uint256 id, uint duration) external returns(uint); // onlyController
}

Registrar
contract IERC721 is IERC165 {
 event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
 event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
 event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

 /**
 * @dev Returns the number of NFTs in `owner`'s account.
 */
 function balanceOf(address owner) public view returns (uint256 balance);

 /**
 * @dev Returns the owner of the NFT specified by `tokenId`.
 */
 function ownerOf(uint256 tokenId) public view returns (address owner);

 /**
 * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to
 * another (`to`).
 *
 * Requirements:
 * - `from`, `to` cannot be zero.
 * - `tokenId` must be owned by `from`.
 * - If the caller is not `from`, it must be have been allowed to move this
 * NFT by either {approve} or {setApprovalForAll}.
 */
 function safeTransferFrom(address from, address to, uint256 tokenId) public;
 /**
 * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to
 * another (`to`).
 *
 * Requirements:
 * - If the caller is not `from`, it must be approved to move this NFT by
 * either {approve} or {setApprovalForAll}.
 */
 function transferFrom(address from, address to, uint256 tokenId) public;
 function approve(address to, uint256 tokenId) public;
 function getApproved(uint256 tokenId) public view returns (address operator);

 function setApprovalForAll(address operator, bool _approved) public;
 function isApprovedForAll(address owner, address operator) public view returns (bool);

 function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public;
}

Resolver
Note: Not all resolvers support all functionality!

When in doubt call

supportsInterface(bytes4 interfaceID) returns (bool)

Resolver
(deprecated items removed)

interface Resolver{
 event AddrChanged(bytes32 indexed node, address a);
 event AddressChanged(bytes32 indexed node, uint coinType, bytes newAddress);
 event NameChanged(bytes32 indexed node, string name);
 event ABIChanged(bytes32 indexed node, uint256 indexed contentType);
 event PubkeyChanged(bytes32 indexed node, bytes32 x, bytes32 y);
 event TextChanged(bytes32 indexed node, string indexed indexedKey, string key);
 event ContenthashChanged(bytes32 indexed node, bytes hash);

 function ABI(bytes32 node, uint256 contentTypes) external view returns (uint256, bytes memory);
 function addr(bytes32 node) external view returns (address);
 function addr(bytes32 node, uint coinType) external view returns(bytes memory);
 function contenthash(bytes32 node) external view returns (bytes memory);
 function dnsrr(bytes32 node) external view returns (bytes memory);
 function name(bytes32 node) external view returns (string memory);
 function pubkey(bytes32 node) external view returns (bytes32 x, bytes32 y);
 function text(bytes32 node, string calldata key) external view returns (string memory);
 function interfaceImplementer(bytes32 node, bytes4 interfaceID) external view returns (address);

 function setABI(bytes32 node, uint256 contentType, bytes calldata data) external;
 function setAddr(bytes32 node, address addr) external;
 function setAddr(bytes32 node, uint coinType, bytes calldata a) external;
 function setContenthash(bytes32 node, bytes calldata hash) external;
 function setDnsrr(bytes32 node, bytes calldata data) external;
 function setName(bytes32 node, string calldata _name) external;
 function setPubkey(bytes32 node, bytes32 x, bytes32 y) external;
 function setText(bytes32 node, string calldata key, string calldata value) external;
 function setInterface(bytes32 node, bytes4 interfaceID, address implementer) external;

 function supportsInterface(bytes4 interfaceID) external pure returns (bool);
}

Controller
(abridged summary)

// use simple names, e.g. "puppy" NOT "puppy.eth"!

contract ETHRegistrarController is Ownable {

 uint constant public MIN_REGISTRATION_DURATION = 28 days;

 mapping(bytes32=>uint) public commitments;

 event NameRegistered(string name, bytes32 indexed label, address indexed owner, uint cost, uint expires);
 event NameRenewed(string name, bytes32 indexed label, uint cost, uint expires);
 event NewPriceOracle(address indexed oracle);

 function rentPrice(string memory name, uint duration) view public returns(uint);
 function valid(string memory name) public view returns(bool);
 function available(string memory name) public view returns(bool);
 function makeCommitment(string memory name, address owner, bytes32 secret) pure public returns(bytes32);
 function commit(bytes32 commitment) public;
 function register(string calldata name, address owner, uint duration, bytes32 secret) external payable;
 function renew(string calldata name, uint duration) external payable;

}

sbt-ethereum ENS commands
> ensAddressLookup <ens-name>.eth
> ensAddressSet <ens-name>.eth <address-as-hex-or-ens-or-alias>

> ensAddressMultichainLookup <BTC|ETH|slip44-index> <ens-name>.eth
> ensAddressMultichainSet <BTC|ETH|slip44-index> <ens-name>.eth <address-as-hex-or-ens-or-alias>

> ensMigrateRegistrar <ens-name>.eth

> ensNameExtend <ens-name>.eth
> ensNameHashes <ens-name>.eth
> ensNamePrice <ens-name>.eth
> ensNameRegister <ens-name>.eth [optional-registrant-address] [optional-secret-from-prior-commitment]
> ensNameStatus <ens-name>.eth

> ensOwnerLookup <ens-name>.eth
> ensOwnerSet <ens-name>.eth <owner-address-as-hex-or-ens-or-alias>

> ensResolverLookup <ens-name>.eth
> ensResolverSet <ens-name>.eth [optional-resolver-address-as-hex-or-ens-or-alias]

> ensSubnodeCreate <full-subnode-ens-name>.eth
> ensSubnodeOwnerSet <full-subnode-ens-name>.eth <subnode-owner-as-hex-or-ens-or-alias>

Some Key Understandings
» An ENS name has an "owner" (which is an Ethereum

address), and it may also have an "address"

» These are two very different things!

» The "owner" can set the "address" and many other things

» The "address" is where the money goes if you send ETH
or transfer tokens to the ENS name.

» Registering a name sets the owner.

» For everything else, the owner needs to define a
resolver.

Registering a name
» It's easy, and interactive.

» But it requires two transactions and so is
fragile!

» Just pay attention to the recovery command, which
you can copy and paste if the second transaction
fails.

> ensNameRegister shiningmonkey.eth
For how long would you like to rent the name (ex: "3 years")? 1 month
...
...
...

Checking the status of a name
> ensNameStatus shiningmonkey.eth
[info] ENS name 'shiningmonkey.eth' is currently owned by '0x465e79b940bc2157e4259ff6b2d92f454497f1e4'.
[info] This registration will expire at 'Tue, 10 Dec 2019 14:33:54 -0800'.
[success] Total time: 2 s, completed Nov 10, 2019 4:58:55 AM

Setting the resolver for a name
sbt-ethereum will help you through this if you forget this and jump to setting an address. But let's do it
explicitly

> ensResolverSet shiningmonkey.eth
[warn] No resolver specified. Using default public resolver '0x226159d592e2b063810a10ebf6dcbada94ed68b8'.

==> T R A N S A C T I O N S I G N A T U R E R E Q U E S T
==>
==> The transaction would be a message with...
==> To: 0x314159265dd8dbb310642f98f50c066173c1259b (with aliases ['ens'] on chain with ID 1)
==> From: 0x465e79b940bc2157e4259ff6b2d92f454497f1e4 (with aliases ['default-sender','testing0'] on chain with ID 1)
==> Data: 0x1896f70a49763e65c2efcc46b84722d1358e19f41fd5932f6db324800e39902828f451d5000000000000000000000000226159d592e2b063810a10ebf6dcbada94ed68b8
==> Value: 0 ether
==>
==> According to the ABI currently associated with the 'to' address, this message would amount to the following method call...
==> Function called: setResolver(bytes32,address)
==> Arg 1 [name=node, type=bytes32]: 0x49763e65c2efcc46b84722d1358e19f41fd5932f6db324800e39902828f451d5
==> Arg 2 [name=resolver, type=address]: 0x226159d592e2b063810a10ebf6dcbada94ed68b8
==>
==> The nonce of the transaction would be 524.
==>
==> $$$ The transaction you have requested could use up to 56610 units of gas.
==> $$$ You would pay 1.0000384 gwei for each unit of gas, for a maximum cost of 0.000056612173824 ether.
==> $$$ This is worth 0.01 USD (according to Coinbase at 4:41 AM).

Would you like to sign this transaction? [y/n] y

[info] Unlocking address '0x465e79b940bc2157e4259ff6b2d92f454497f1e4' (on chain with ID 1, aliases ['default-sender','testing0'])
Enter passphrase or hex private key for address '0x465e79b940bc2157e4259ff6b2d92f454497f1e4': *******************

[info] A transaction with hash '0x35b7d30ecc1ca53c002b4476d88657a7d09054fa1a0724ffd917b9c2263fb842' has been submitted.
[info] Waiting up to 5 minutes for the transaction to be mined.
[info] The name 'shiningmonkey.eth' is now set to be resolved by a contract at '0x226159d592e2b063810a10ebf6dcbada94ed68b8' (with aliases ['ens-public-resolver-2019-10-24'] on chain with ID 1).
[success] Total time: 100 s, completed Nov 10, 2019 4:42:41 AM

Setting the address for a name
> ensAddressSet shiningmonkey.eth default-sender
[warn] Gas price override set, default gas price plus a markup of 0.50 (50.00%), not subject to any cap or floor

==> T R A N S A C T I O N S I G N A T U R E R E Q U E S T
==>
==> The transaction would be a message with...
==> To: 0x226159d592e2b063810a10ebf6dcbada94ed68b8 (with aliases ['ens-public-resolver-2019-10-24'] on chain with ID 1)
==> From: 0x465e79b940bc2157e4259ff6b2d92f454497f1e4 (with aliases ['default-sender','testing0'] on chain with ID 1)
==> Data: 0xd5fa2b0049763e65c2efcc46b84722d1358e19f41fd5932f6db324800e39902828f451d5000000000000000000000000465e79b940bc2157e4259ff6b2d92f454497f1e4
==> Value: 0 ether
==>
==> According to the ABI currently associated with the 'to' address, this message would amount to the following method call...
==> Function called: setAddr(bytes32,address)
==> Arg 1 [name=node, type=bytes32]: 0x49763e65c2efcc46b84722d1358e19f41fd5932f6db324800e39902828f451d5
==> Arg 2 [name=a, type=address]: 0x465e79b940bc2157e4259ff6b2d92f454497f1e4
==>
==> The nonce of the transaction would be 525.
==>
==> $$$ The transaction you have requested could use up to 66172 units of gas.
==> $$$ You would pay 3.9 gwei for each unit of gas, for a maximum cost of 0.0002580708 ether.
==> $$$ This is worth 0.05 USD (according to Coinbase at 5:14 AM).

Would you like to sign this transaction? [y/n] y

Enter passphrase or hex private key for address '0x465e79b940bc2157e4259ff6b2d92f454497f1e4': *******************

[info] Unlocking address '0x465e79b940bc2157e4259ff6b2d92f454497f1e4' (on chain with ID 1, aliases ['default-sender','testing0'])
[info] A transaction with hash '0xa491ba5f021dde32add5f3644f520b8c68e89533d416561c025366439a58b8e1' has been submitted.
[info] Waiting up to 5 minutes for the transaction to be mined.
[info] The name 'shiningmonkey.eth' now resolves to '0x465e79b940bc2157e4259ff6b2d92f454497f1e4' (with aliases ['default-sender','testing0'] on chain with ID 1).
[success] Total time: 54 s, completed Nov 10, 2019 5:15:30 AM

Multichain support is fun & new
> ensAddressMultichainLookup BTC exigent.eth
[info] For coin 'BTC' with SLIP-44 Index 0, the name 'exigent.eth' resolves to address 18cjh41Ljp7CPzFZfrX45sdX9yKtaKXtPd,
or binary-format:76a914538b134f052afc31504391632474579f2e62cf9288ac.
[success] Total time: 1 s, completed Nov 10, 2019 5:01:24 AM

Registering by hand -- Step 1
Define an alias for the base ENS

Note: The base ENS is the only guaranteed permanent
ENS construct. Be careful about caching / giving
aliases to the other constracts we will look up
below! It's best to look them up fresh each time.

> ethAddressAliasSet ens 0x314159265dd8dbb310642f98f50c066173c1259b
[info] Alias 'ens' now points to address '0x314159265dd8dbb310642f98f50c066173c1259b' (for chain with ID 1).
[info] Refreshing caches.
[success] Total time: 0 s, completed Nov 10, 2019 2:19:11 AM

Registering by hand -- Step 2
Discover the namehash of top-level-domain "eth"

> ensNameHashes eth
[info] The ENS namehash of 'eth' is '0x93cdeb708b7545dc668eb9280176169d1c33cfd8ed6f04690a0bcc88a93fc4ae'.
[success] Total time: 0 s, completed Nov 10, 2019 2:22:48 AM

Registering by hand -- Step 3
Discover the resolver for the top-level ENS

> ethTransactionView ens resolver 0x93cdeb708b7545dc668eb9280176169d1c33cfd8ed6f04690a0bcc88a93fc4ae
[info] The function 'resolver' yields 1 result.
[info] + Result 1 of type 'address' is 0x97683a370239817cf33ec2c2ad3b3a1884571f69
[success] Total time: 1 s, completed Nov 10, 2019 2:24:30 AM

> ethContractAbiImport 0x97683a370239817cf33ec2c2ad3b3a1884571f69
An Etherscan API key has been set. Would you like to try to import the ABI for this address from Etherscan? [y/n] y
Attempting to fetch ABI for address '0x97683a370239817cf33ec2c2ad3b3a1884571f69' from Etherscan.
ABI found:
[...lots and lots of JSON here...]
Use this ABI? [y/n] y
[info] A default ABI is now known for the contract at address 0x97683a370239817cf33ec2c2ad3b3a1884571f69
[info] Refreshing caches.
[success] Total time: 8 s, completed Nov 10, 2019 2:53:20 AM

Registering by hand -- Step 4
Discover a Controller

» The Controller interface has an EIP-165 interface ID of 0x018fac06.

» Remember, the namehash of "eth" was
0x93cdeb708b7545dc668eb9280176169d1c33cfd8ed6f04690a0bcc88a93fc4ae

> ethTransactionView 0x97683a370239817cf33ec2c2ad3b3a1884571f69 interfaceImplementer 0x93cdeb708b7545dc668eb9280176169d1c33cfd8ed6f04690a0bcc88a93fc4ae 0x018fac06
[info] The function 'interfaceImplementer' yields 1 result.
[info] + Result 1 of type 'address' is 0xb22c1c159d12461ea124b0deb4b5b93020e6ad16
[success] Total time: 1 s, completed Nov 10, 2019 2:56:50 AM

> ethContractAbiImport 0xb22c1c159d12461ea124b0deb4b5b93020e6ad16
An Etherscan API key has been set. Would you like to try to import the ABI for this address from Etherscan? [y/n] y
Attempting to fetch ABI for address '0xb22c1c159d12461ea124b0deb4b5b93020e6ad16' from Etherscan.
ABI found:
[...lots of JSON goes here...]
Use this ABI? [y/n] y
[info] A default ABI is now known for the contract at address 0xb22c1c159d12461ea124b0deb4b5b93020e6ad16
Enter an optional alias for the address '0xb22c1c159d12461ea124b0deb4b5b93020e6ad16', now associated with
the newly imported default ABI (or [return] for none): ens-controller-2019-11-10
[info] Alias 'ens-controller-2019-11-10' now points to address '0xb22c1c159d12461ea124b0deb4b5b93020e6ad16' (for chain with ID 1).
[info] Refreshing caches.
[success] Total time: 23 s, completed Nov 10, 2019 2:58:43 AM

Registering by hand -- Step 5
Check name availability and price

» Remember, our controller address was
0xb22c1c159d12461ea124b0deb4b5b93020e6ad16

» We'll price the shortest registration allowed

> ethTransactionView 0xb22c1c159d12461ea124b0deb4b5b93020e6ad16 available glowingmonkey
[info] The function 'available' yields 1 result.
[info] + Result 1 of type 'bool' is true
[success] Total time: 0 s, completed Nov 10, 2019 3:09:35 AM

> ethTransactionView 0xb22c1c159d12461ea124b0deb4b5b93020e6ad16 MIN_REGISTRATION_DURATION
[info] The function 'MIN_REGISTRATION_DURATION' yields 1 result.
[info] + Result 1 of type 'uint256' is 2419200
[success] Total time: 1 s, completed Nov 10, 2019 3:29:25 AM

> ethTransactionView 0xb22c1c159d12461ea124b0deb4b5b93020e6ad16 rentPrice glowingmonkey 2419200
[info] The function 'rentPrice' yields 1 result.
[info] + Result 1 of type 'uint256' is 2037241502249607
[success] Total time: 1 s, completed Nov 10, 2019 3:31:02 AM

Registering by hand -- Step 6
Generate a commitment

» To (somewhat) discourage front-running, the ENS controller requires a two-step registration.

» First we must make a commitment. To generate one, we'll need a "random" 32-byte secret.

» Remember, our controller address was 0xb22c1c159d12461ea124b0deb4b5b93020e6ad16

> ethUtilHashKeccak256 0xab569178
[info] 0x0439b438e7ea7ff3a664832ab05d5c9fd065bcdb5d1ff2b51631ed4b987bd5f1
[success] Total time: 0 s, completed Nov 10, 2019 3:07:00 AM

> ethTransactionView 0xb22c1c159d12461ea124b0deb4b5b93020e6ad16 makeCommitment
glowingmonkey default-sender 0x0439b438e7ea7ff3a664832ab05d5c9fd065bcdb5d1ff2b51631ed4b987bd5f1
[info] The function 'makeCommitment' yields 1 result.
[info] + Result 1 of type 'bytes32' is 0xe51c895f09e8bd0670b8cd3e26679691b2750713c157ece007290d275972e8d1
[success] Total time: 1 s, completed Nov 10, 2019 3:13:54 AM

Registering by hand -- Step 7
Commit

> ethTransactionInvoke 0xb22c1c159d12461ea124b0deb4b5b93020e6ad16 commit 0xe51c895f09e8bd0670b8cd3e26679691b2750713c157ece007290d275972e8d1

==> T R A N S A C T I O N S I G N A T U R E R E Q U E S T
==>
==> The transaction would be a message with...
==> To: 0xb22c1c159d12461ea124b0deb4b5b93020e6ad16 (with aliases ['ens-controller-2019-11-10'] on chain with ID 1)
==> From: 0x465e79b940bc2157e4259ff6b2d92f454497f1e4 (with aliases ['default-sender','testing0'] on chain with ID 1)
==> Data: 0xf14fcbc8e51c895f09e8bd0670b8cd3e26679691b2750713c157ece007290d275972e8d1
==> Value: 0 ether
==>
==> According to the ABI currently associated with the 'to' address, this message would amount to the following method call...
==> Function called: commit(bytes32)
==> Arg 1 [name=commitment, type=bytes32]: 0xe51c895f09e8bd0670b8cd3e26679691b2750713c157ece007290d275972e8d1
==>
==> The nonce of the transaction would be 520.
==>
==> $$$ The transaction you have requested could use up to 53206 units of gas.
==> $$$ You would pay 1.32 gwei for each unit of gas, for a maximum cost of 0.00007023192 ether.
==> $$$ This is worth 0.01 USD (according to Coinbase at 3:16 AM).

Would you like to sign this transaction? [y/n] y

[info] Unlocking address '0x465e79b940bc2157e4259ff6b2d92f454497f1e4' (on chain with ID 1, aliases ['default-sender','testing0'])
Enter passphrase or hex private key for address '0x465e79b940bc2157e4259ff6b2d92f454497f1e4': *******************

[info] Called function 'commit', with args 'e51c895f09e8bd0670b8cd3e26679691b2750713c157ece007290d275972e8d1', sending 0 wei to
address '0xb22c1c159d12461ea124b0deb4b5b93020e6ad16' in transaction with hash '0x219559ad270662c8d022516aff91e8c51b333c77c91d6c5954c7dcf9b50cd74a'.
[info] Waiting for the transaction to be mined (will wait up to 5 minutes).
[info] Transaction Receipt:
[info] Transaction Hash: 0x219559ad270662c8d022516aff91e8c51b333c77c91d6c5954c7dcf9b50cd74a
[info] Transaction Index: 122
[info] Transaction Status: SUCCEEDED
[info] Block Hash: 0xa4c40823f7cae8d90059fd1af4ce40021411097a5427e0132434dab79525ba8e
[info] Block Number: 8908146
[info] From: 0x465e79b940bc2157e4259ff6b2d92f454497f1e4
[info] To: 0xb22c1c159d12461ea124b0deb4b5b93020e6ad16
[info] Cumulative Gas Used: 7455246
[info] Gas Used: 44339
[info] Contract Address: None
[info] Logs: None
[info] Events: None
[success] Total time: 152 s, completed Nov 10, 2019 3:19:25 AM

Registering by hand -- Step 8
Check minimum wait time

» It's currently 60 seconds...

> ethTransactionView 0xb22c1c159d12461ea124b0deb4b5b93020e6ad16 minCommitmentAge
[info] The function 'minCommitmentAge' yields 1 result.
[info] + Result 1 of type 'uint256' is 60
[success] Total time: 2 s, completed Nov 10, 2019 3:22:34 AM

Registering by hand -- Step 9
Wait minimum wait time

♬ La la la la la ♬

Registering by hand -- Step 10
Register the name!

» We'll bump up the rent price we computed by a bit.
Any "change" will be returned anyway.

> ethTransactionInvoke 0xb22c1c159d12461ea124b0deb4b5b93020e6ad16 register glowingmonkey default-sender 2419200
0x0439b438e7ea7ff3a664832ab05d5c9fd065bcdb5d1ff2b51631ed4b987bd5f1 2237241502249607 wei

==> T R A N S A C T I O N S I G N A T U R E R E Q U E S T
==>
==> The transaction would be a message with...
==> To: 0xb22c1c159d12461ea124b0deb4b5b93020e6ad16 (with aliases ['ens-controller-2019-11-10'] on chain with ID 1)
==> From: 0x465e79b940bc2157e4259ff6b2d92f454497f1e4 (with aliases ['default-sender','testing0'] on chain with ID 1)
==> Data: 0x85f6d1550080000000000000000000000000465e79b9...
==> Value: 0.002237241502249607 ether
==>
==> According to the ABI currently associated with the 'to' address, this message would amount to the following method call...
==> Function called: register(string,address,uint256,bytes32)
==> Arg 1 [name=name, type=string]: "glowingmonkey"
==> Arg 2 [name=owner, type=address]: 0x465e79b940bc2157e4259ff6b2d92f454497f1e4
==> Arg 3 [name=duration, type=uint256]: 2419200
==> Arg 4 [name=secret, type=bytes32]: 0x0439b438e7ea7ff3a664832ab05d5c9fd065bcdb5d1ff2b51631ed4b987bd5f1
==>
==> The nonce of the transaction would be 521.
==>
==> $$$ The transaction you have requested could use up to 183518 units of gas.
==> $$$ You would pay 1.4 gwei for each unit of gas, for a maximum cost of 0.0002569252 ether.
==> $$$ This is worth 0.05 USD (according to Coinbase at 3:35 AM).
==> $$$ You would also send 0.002237241502249607 ether (0.42 USD), for a maximum total cost of 0.002494166702249607 ether (0.47 USD).

Would you like to sign this transaction? [y/n] y

Enter passphrase or hex private key for address '0x465e79b940bc2157e4259ff6b2d92f454497f1e4': *******************

[info] Unlocking address '0x465e79b940bc2157e4259ff6b2d92f454497f1e4' (on chain with ID 1, aliases ['default-sender','testing0'])
[info] Called function 'register', with args '"glowingmonkey", 465e79b940bc2157e4259ff6b2d92f454497f1e4, 2419200,
0439b438e7ea7ff3a664832ab05d5c9fd065bcdb5d1ff2b51631ed4b987bd5f1', sending 2237241502249607 wei to address
'0xb22c1c159d12461ea124b0deb4b5b93020e6ad16' in transaction with hash '0xa934b3bd30ada7acfb1ab2ef4c5976cd77a242c8f96a2664def02063eb50e487'.
[info] Waiting for the transaction to be mined (will wait up to 5 minutes).

Registering by hand
Hooray!

> ethTransactionView 0xb22c1c159d12461ea124b0deb4b5b93020e6ad16 available glowingmonkey
[info] The function 'available' yields 1 result.
[info] + Result 1 of type 'bool' is false
[success] Total time: 1 s, completed Nov 10, 2019 3:51:44 AM

Thanks!

